Vascular endothelial growth factor blockade rapidly elicits alternative proangiogenic pathways in neuroblastoma.
نویسندگان
چکیده
Most children with neuroblastoma presenting after infancy have metastatic, chemoresistant disease. Amplification of the MYCN proto-oncogene is a significant marker of these poor-prognosis neuroblastoma tumors. Recent studies suggest that MYCN may function in part by promoting angiogenesis via vascular endothelial growth factor (VEGF). VEGF blockade has been validated as a therapeutic strategy in adult cancers. In these studies, we asked whether inhibition of VEGF signaling via VEGFR2 blockade in established MYCN-amplified neuroblastoma xenografts would: 1) restrict tumor growth; 2) induce hypoxia; and 3) alter tumor vasculature. The MYCN-amplified neuroblastoma human cell line NGP was implanted intrarenally in athymic female mice. After 5 weeks, mice with established tumors were selected, a cohort euthanized to provide day 0 controls, and the rest assigned to receive biweekly injections of DC101 (anti-murine VEGFR2 antibody) or vehicle. DC101 treatment did not inhibit progressive tumor growth in established NGP xenografts. Although tumor vasculature was not significantly disrupted, a modest increase in tumor hypoxia was demonstrated by pimonidazole staining, and expression of a previously described hypoxia metagene was increased by gene set enrichment analysis (GSEA) in DC101-treated tumors. DC101 treatment elicited increased: 1) expression of VEGFR1 and its ligand placental growth factor; and 2) increased Notch activation in tumor vasculature concurrent with expression of the Notch ligand Jagged1. This result suggests that established MYCN-amplified neuroblastoma tumors are relatively VEGF-independent, and display the ability to rapidly up-regulate hypoxia-responsive alternative proangiogenic mechanisms that may stabilize vasculature when VEGF is deficient.
منابع مشابه
Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (Review).
Antiangiogenic therapy, including blockade of vascular endothelial growth factor (VEGF) signaling, was highly anticipated to improve the prognosis for patients with advanced cancers following the success of preclinical animal models. However, antiangiogenic monotherapy with VEGF antagonists has produced disappointing results in clinical trials to date. One of the reasons for this poor outcome i...
متن کاملBIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy.
Inhibition of tumor angiogenesis through blockade of the vascular endothelial growth factor (VEGF) signaling pathway is a novel treatment modality in oncology. Preclinical findings suggest that long-term clinical outcomes may improve with blockade of additional proangiogenic receptor tyrosine kinases: platelet-derived growth factor receptors (PDGFR) and fibroblast growth factor receptors (FGFR)...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملVascular Endothelial Growth Factor from Embryonic Status to Cardiovascular Pathology
Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T ...
متن کاملFGD5 mediates proangiogenic action of vascular endothelial growth factor in human vascular endothelial cells.
OBJECTIVE Vascular endothelial growth factor (VEGF) exerts proangiogenic action and induces activation of a variety of proangiogenic signaling pathways, including the Rho family small G proteins. However, regulators of the Rho family small G proteins in vascular endothelial cells (ECs) are poorly understood. Here we attempted to clarify the expression, subcellular localization, downstream effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 34 2 شماره
صفحات -
تاریخ انتشار 2009